
   

Abstract -- In this paper, the fuzzy classification method 

developed by Abe and Lan (1995) has been improved. This 

method extracts fuzzy rules directly from numerical data. This 

paper shows how pre-processing input data using clustering 

may help the classification accuracy in some cases. The 

proposed method is compared with Abe & Lan’s fuzzy 

classification method with a data set obtained from an oil 

reservoir in the North West Shelf in Australia and the Fisher 

Iris data. 

 

I. FUZZY SYSTEMS FOR PATTERN CLASSIFICATION 

 

Pattern classification is an important area in many 

engineering sciences. Although neural networks are suitable 

for the classification of data set with a large number of 

input dimensions, they often suffer from the need for the 

optimisation of network structure and extensive 

computation time for practical applications (Wong et al,. 

1997). 

 

In many circumstances, fuzzy systems present a more 

practical approach for pattern classification. They do not 

necessarily rely on trial and error used to construct neural 

networks. Complex physical systems can be reduced to a 

set of fuzzy rules, which are often appealing to engineering 

scientists. 

II. . FUZZY CLASSIFICATION USING HYPERBOXES 

 

The idea of representing the existence of data for a class by 

a set of hyperboxes (or rules) was discussed in Simpson 

(1992). Abe and Lan (1995) developed a supervised fuzzy 

classification method (or simply the “AL” method) based 

on the use of hyperboxes to solve the problem where 

different classes overlap each other. 

 

Two types of hyperboxes were introduced in the AL 

method: activation hyperboxes and inhibition hyperboxes. 

An activation hyperbox represents the existence region for a 

class, whereas an inhibition hyperbox contains the 

overlapping data within the activation hyperbox. In this 
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approach, the hyperbox is drawn by taking the maximum 

and minimum values of the input vectors for a class. 

 

During training, fuzzy hyperboxes are defined recursively 

for each level. For example, let us assume there are three 

classes, a, b and c in the training set with a certain number 

of input vectors x with m dimensions (x1,...,xm). Fuzzy 

rules are generated for every class pair combination, (a, b), 

(a, c), (b, a), (b, c), (c, a) and (c, b). The first element in the 

pair is the leading class. We start with class pair (a, b) at the 

top level, 0. An activation hyperbox, Aaa, will be drawn to 

cover the region occupied by class a, and similarly for class 

b to get Abb. If these two hyperboxes do not overlap, then 

the following rules are obtained: 

 

Rule 1: If x is in Aaa then x is class a. 

 

Rule 2: If x is in Abb then x is class b. 

 

However, if Aaa and Abb do overlap, an inhibition 

hyperbox, Iab, will be drawn to represent the overlapping 

region between Aaa and Abb. In this case, the following 

rules are generated instead: 

 

Rule 1: If x is in Aaa and not in Iab, then x is class a. 

 

Rule 2: If x is in Abb and not in Iab, then x is class b. 

 

The same process will be repeated for any input vector x 

which is in Iab, and a new level is created. Activation and 

inhibition hyperboxes (i.e. fuzzy rules) will be created in 

the same manner in this new level. The recursion will stop 

when there is no overlapping between the activation 

hyperboxes or the number of the remaining input vectors 

are too few to form hyperboxes (ie. when there is only one 

vector left). 

 

This results in a pair of fuzzy rules generated by the 

recursion at every level. So, every class pair will have a list 

of fuzzy rules. 

 

In testing, the data set is tested to see the likelihood of its 

belonging to a particular class. A test vector x is passed into 

the fuzzy rule lists for a class pair to generate a list of 

degree of membership (DOM) for each level. The 

maximum of the list is taken as the DOM of x for that class 

pair. 
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Therefore, a test vector x will have a list of DOMs for every 

class pair. Then, the conflict is solved for every class 

individually. The minimum DOM from the class pairs with 

the same leading class is taken as the likelihood/DOM of x 

for that leading class. 

 

In the previous example, the fuzzy rules from (a, b) will 

determine the DOM of x when compared to class b. 

Similarly, the rules obtained from (a, c) will determine the 

DOM of x when compared to class c. The smallest value is 

taken as the DOM of x for class a. 

 

This process is repeated for every class. In the end, every 

vector x will have a DOM value for every class. Vector x is 

classified as the class with the highest DOM. 

 

DOM is 1 for x located within the activation hyperbox. For 

x outside the activation hyperbox, it is determined by xk 

where distance to the surface of the hyperbox is the 

maximum among those of x1,…,xm, to approximate the real 

distance. For example, in Fig. 3 below the horizontal 

distance is zero and is ignored. Thus, in the AL method, the 

DOM is calculated based on only one dimension. The 

membership function of the activation hyperbox is shown in 

Fig. 1. 

 

 
Fig. 1: Membership function (Abe and Lan, 1995). 

 

If xk is nearest to the surface of hyperbox in its dimension, it 

is clear that as xk moves further away from the surface of 

the hyperbox, the DOM decreases until it reaches zero. 

 

III. DRAWBACKS OF THE AL METHOD 

 

Although the AL method is fast to train and has good 

performance for data sets with distinct characteristics, this 

method has some drawbacks when the data classes are 

highly overlapped, which is not uncommon in real world 

data sets. 

 

According to the AL method, a hyperbox is drawn taking 

the maximum and minimum values of vectors of a class. If 

the maximum and minimum values are close (ie. the vectors 

are close to each other), the test data will be less likely to 

fall into this hyperbox and be classified as this class. It may 

lead to a wrong classification. Four examples are shown to 

illustrate the drawbacks. 

In the first example (Fig. 2), circled b would be classified 

as class a, because it exists entirely within Aaa. However, b 

is closer to the centre of Abb than Aaa. This case is likely to 

happen when b is not used in training. This behaviour leads 

to poor generalisation by the AL method. 

 

 
Fig. 2: A case where Abb is small. 

 

In addition, the DOM function is based on only one 

dimension. Therefore, it may not represent the real 

relationship between the test data and the region occupied 

by the class. 

 

In the second example (Fig. 3), the AL method would 

classify the circled b as class a, since its distance to Aaa is 

closer than the distance to Abb. However, this is clearly 

wrong because circled b is closer to the centre of Abb (or 

any other b). 

  

 
    Fig. 3: A case in which d1 and d2 are the maximum 

 distance between circled b and the surface of  the 

hyperboxes. 
 

In the third example (Fig. 4), the AL method would not be 

able to classify the circled b, because b has equal DOM 

from both of the classes due to its equal maximum distances 

in the vertical dimension to Aaa and Abb. But clearly, 

circled b is closer to the centre of Abb than Aaa. 
 

 
    Fig. 4: A case where the distance d1 between circled b and 

the two hyperboxes would not help. 
 

In the last example (Fig. 5), circled b would be classified as 

class a, because it exists entirely within Aaa. 

 

The case in presented Fig. 5 is in fact a complex one. If the 

DOM of circled b is determined only by its distance to the 

centre of Aaa and Abb, b may not be correctly classified, 

because circled b is closer to the centre of Aaa than Abb. 

 

An improved AL method is introduced in the next section 

to solve the misclassification problem in the four cases 

presented. 



 
    Fig. 5: A case in which the distance from circle b to  the 

centre of Aaa and Abb would not help. 

 

IV. FUZZY CLUSTERING CLASSIFICATION METHOD 

 

This paper proposes a fuzzy clustering classification 

method (or simply the “FCC” method), in which the 

misclassification problem mentioned in the previous section 

will be solved. 

 

The FCC method is based on the AL method. It consists of 

three parts as shown in Fig. 6. Each of the three parts is 

represented as a block. The first part performs input 

clustering. The second part is a fuzzy classification system, 

which is similar to the AL method. Activation and 

inhibition hyperboxes are also used to generate fuzzy rules 

in the same way as the AL method. The final part merges 

the outputs from the fuzzy classification system to give a 

final classification decision. 
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Fig. 6: The structure of FCC. 

 

In FCC, we adopt a new DOM function. Instead of taking 

the maximum distance to the surface of the hyperbox 

among all dimensions, FCC calculates the DOM by using 

the distance between the vector x and the centre of the 

hyperbox. The centre of an activation hyperbox is c with m 

dimensions (c1,…,cm). The distance between x and c is: 

 

( ) ( ) ( )22
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And the DOM of x is simply – dc(x), which means that the 

larger the distance, the smaller the DOM. 

 

Hence, for the fuzzy rules generated at different levels for a 

class, a list of DOM values (in FCC, the values are negative) 

will be produced by these rules. Thus, the final DOM of x 

for a class is the maximum of the DOM values. 

 

In this way, as x moves further away from the centre of an 

activation hyperbox, the DOM will become smaller. The 

likelihood/DOM of x for a particular class is determined by 

how close it is to the centre of the occupied 

region/hyperbox, not just to the surface of the hyperbox. By 

using this DOM function, a better generalisation can be 

achieved, because the test set vectors do not have to occur 

within the activation hyperbox to achieve a high DOM 

value. The misclassification problems in the first three 

examples in the previous section can be avoided using the 

new DOM function. 

 

In the last example, however, the use of the new DOM 

function alone cannot solve the problem, because circled b 

is sitting near the centre of Aaa. This gives a high DOM of 

b for class a. 

 

A technique to “break up” the activation hyperbox of class 

a is required in this case. The first part of FCC uses the 

fuzzy c-means method (Bezdek, 1981; Sugeno and 

Yasukawa, 1995) to perform fuzzy clustering of the input 

vectors in training (Fig. 6). Each class is clustered into n 

sub-classes. The number n can be changed to suit different 

data sets. Each sub-class is treated as a class of its own in 

the fuzzy classification system. 

 

 
Fig. 7: The new hyperboxes after clustering. 

 

The fuzzy classification system will determine the DOMs 

of x for all the sub-classes (Fig. 6). If the DOM of x is 

denoted as dai(x), for sub-class ai, for ni ,...,1= , then the 

DOM of x for class a is: 

 

( ) ( ) ( )( )xxx ndadada ,...,max 1=  

 

A test vector x is classified as class a if a sub-class derived 

from a has the highest DOM by the fuzzy classification 

system. 

By applying FCC, the new rules generated in the last 

example from the previous section are shown in Fig. 7. It is 

clear that circled b will be correctly classified in this case. 

V. EXPERIMENT RESULTS AND ANALYSIS 

 

Four experiments have been performed. The first 

experiment uses the Fisher Iris data as a benchmark to show 

the performance of the proposed FCC method. The 

remaining experiments consist of classification of an oil 

data set obtained from three oil wells in Australia. The data 

set is split randomly to form training and test sets. 

 



Fisher iris data 

 

Iris data was used in this experiment as a benchmark to 

compare the performance of the FCC and the AL methods. 

Due to the page limitations, we will only show part of the 

FCC results. 

 

The first 25 and remaining 25 vectors are used for training 

and testing from each of the three classes respectively, 

giving a total of 75 vectors for training and 75 vectors for 

testing. Each vector has 4 dimensions. Three of the four 

dimensions are shown as a 3D plot in Fig. 8. The three 

different colour grading represent the three classes. The plot 

shows that the Iris data set presents a relatively “easy” 

problem, because the degree of overlapping between classes 

is low. 

 

Table 1 shows the performance of the AL and FCC 

methods. The number of clusters required in each of the 

three classes (C1,C2,C3) can be varied by the user. This 

produces a different number of fuzzy rules (hyperboxes) 

after training. The number in parentheses represents the 

number of input vectors used in training and testing for 

each class. The recognition rate is defined as the number of 

correct classifications divided by the number of input 

vectors. 

 

For example, the (1,1,1) configuration indicates that only 

one cluster was created in each class. This is equivalent to 

the AL method but using the new DOM function. The FCC 

method generated 4 fuzzy rules. This configuration gave 

100% recognition for class 1 data, 88% in class 2 and 92% 

in class 3 in testing. This is equivalent to an overall 

recognition rate of 93%. 

 

In this experiment, the AL method was able to achieve a 

high recognition rate of 92%. The FCC results using (1,1,1) 

improved only slightly and insignificantly (93%) compared 

to the AL method. Note that some configurations could 

produce better results in one class than others. For example, 

(1,1,4) was good for class 3 but not good for class 2. The 

best configuration was (4,4,4) which resulted in a 

recognition rate of 99%. 

 

Note that the present conclusions were made based on the 

availability of the test results. For real application, we may 

need to obtain the best configuration for each class and the 

overall performance using the training set. 

 

 
Fig. 8: Fisher Iris data. 

 

Training Testing 

No. of clusters 
created in 

No. of 
rules 

Recognition rate (%) 

C1 

(25) 

C2 

(25) 

C3 

(25) 

 C1 

(25) 

C2 

(25) 

C3 

(25)  

Total 

(75)  

a)  
     

b) AL 
4 100 88 88 92 

1 1 1 4 100 88 92 93 

4 4 4 66 100 100 96 99 

1 1 4 15 100 84 100 95 

Table 1: Fish Iris data test results. 

 

Oil data set 

 

The second data set was obtained from three oil wells in the 

North West Shelf, offshore western Australia. The data set 

is more complicated than the Iris data set, because it has 

many highly overlapping regions. The data set contains a 

set of rock samples extracted from the wells, which were 

manually classified by an expert geologist as fracture, ok 

and good. It is an important process because the quality of 

the rock samples would determine the representativeness of 

subsequent measurements performed on the samples for 

reservoir engineering analysis. 

 

The objective is to develop a classifier to determine the 

quality of the rock samples using 11 types of well 

measurements (inputs). The performance can be evaluated 

by comparing the predictions with the expert classification. 

 

Three 3D plots displaying the distribution of three inputs 

(out of 11) from wells 1, 2 and 3 are shown in Figs. 9, 10 

and 11 respectively. In these figures, black spheres 

represent data belonging to fracture class, good are gray 

and ok are white. 

 

In the experiment with the well 1 data set, as the number of 

clusters of a class increases in training, the recognition rate 

increases for that class. This is because the test vectors will 

be more likely to fall near the centre of one of the clusters. 

 

By applying clustering, it was interesting to see that it was 

possible to “tune” the recognition rate for each class 

individually in testing by changing the cluster numbers in 

training. 

 

Well 1 data set 

 

Table 2 shows the experiment result comparison between 

the AL and FCC methods. The (1,1,1) configuration gave a 

base recognition performance of 47% for fracture, 60% for 

good and 40% for ok. With (4,2,1) configuration, it was 

able to have a recognition rate of 93% for fracture and 

100% for good in testing. Due to the increased cluster sizes 

in fracture and good classes, the test data was more likely 



to be classified as fracture or good. Hence the recognition 

rate of ok data in testing reduced. 

 

The (1,1,4) gave a recognition rate of 75% for ok test data, 

but only 20% and 33% for the other two classes for the 

same reason mentioned above. 

 

With the use of more clusters in all three classes, such as 

the (5,5,6) configuration, the overall recognition rate was 

improved to 70%. It was a 20% improvement compared to 

the AL method (50%). 

 

Well 2 data set 

 

Table 3 tabulates the results from AL and FCC methods. 

The (5,5,6) configuration gave a much greater recognition 

rate (75%) compared to the (1,1,1) configuration (41%) or 

the AL method (61%). 

 

Well 3 data set 

 

The major characteristic of this data set is that there are 

only 9 vectors in fracture in the training set. This normally 

means that the test vectors will be less likely to fall into the 

activation hyperbox. This was shown in the AL method, in 

which all the test vectors were classified as either good or 

ok. The recognition rate for fracture was 0%. 

 

 
Fig. 9: Oil data for well 1. 

 

Training Testing 

No. of clusters 
created in 

No. of 
rules 

Recognition rate (%) 

Frac 

(39) 

Good 

(26) 

OK 

(51) 

 Frac 

(15) 

Good 

(15) 

OK 

(20)  

Total 

(50)  

c)  
     

d) AL 
8 47 47 55 50 

1 1 1 8 47 60 40 48 

4 2 1 24 93 100 10 62 

1 1 4 18 20 33 75 46 

5 5 6 120 80 73 45 70 

Table 2:  Well 1 data test results, in which 116 vectors  

are used in training and 50 in testing. 
 

 
Fig. 10: Oil data for well 2. 

 

Training Testing 

No. of clusters 
created in 

No. of 
rules 

Recognition rate (%) 

Frac 

(18) 

Good 

(70) 

OK 

(64) 

 Frac 

(15) 

Good 

(35) 

OK 

(25)  

Total 

(75)  

e)  
     

f) AL 
9 40 66 68 61 

1 1 1 9 73 51 8 41 

4 2 1 25 100 57 4 48 

1 3 1 15 40 97 4 55 

1 1 4 19 47 17 92 48 

5 5 6 122 93 83 52 75 

  Table 3: Well 2 data test results, in which 152 vectors   

are used in training and 75 in testing. 

 

In the FCC method, however, the experiments 

demonstrated that the fuzzy rules generated in training 

would not be “biased” to a class with a relatively large 

number of the vectors in the training set. It could recognise 

the class with a relatively small number of training vectors 

in testing. 

 

 
Fig. 11: Oil data for well 3. 



 

Training Testing 

No. of clusters 
created in 

No. of 
rules 

Recognition rate (%) 

Frac 
(9) 

Good 
(34) 

OK 
(48) 

 Frac 
(8) 

Good 
(31) 

OK 
(46) 

Total 
(85) 

g)  
     

h) AL 
6 0 55 59 52 

1 1 1 6 75 45 26 38 

3 2 2 24 88 45 41 47 

1 3 1 13 63 84 22 48 

3 1 6 46 75 10 83 55 

3 5 6 93 63 45 70 60 

  Table 4: Well 3 Oil data test results, in which 91 vectors   

are used in training and 85 in testing. 

 

The FCC method calculates the DOM based on the centre, 

not the distance to the surface of the hyperbox. This gives a 

better generalisation ability. Table 4 shows that a high 

recognition rate (up to 88%) for fracture was achieved 

using the FCC method. 

 

The (3,5,6) configuration gave a 60% overall recognition 

rate. It increased the recognition rate of fracture and ok data 

in this case. However there is a small reduction for good 

data. The improvement was 8% compared to the AL 

method. 

VI. CONCLUSION 

 

Fuzzy rule based classifiers are fast to train and can be used 

in complex data sets. This paper proposes an improved 

classifier, namely the fuzzy clustering classification (FCC) 

method. It is developed based on the work presented by 

Abe and Lan (1995). The major differences are the use of 

an improved degree of membership function and clustering 

of inputs prior to fuzzy classification. The performance of 

the FCC and AL are showed using the Fisher Iris data set 

and an oil data set. 

 

In the Iris data set, the AL method produces good results 

due to the simplicity of the data set. The FCC method does 

not show any marked improvement. 

 

The oil data set is relatively complex. The FCC method 

produces 8% to 20% improvement over the AL method in 

our experiments. The FCC also provides a flexible option to 

configure the fuzzy network so that the maximum 

classification may be obtained for a given class. 

 

In order to develop a better classifier, further work needs to 

be done to determine the optimal cluster configuration for a 

given problem. The incorporation of the boundary 

expansion technique (Abe and Lan, 1995) may also 

enhance the accuracy of classification. 
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